If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+250X-12500=0
a = 1; b = 250; c = -12500;
Δ = b2-4ac
Δ = 2502-4·1·(-12500)
Δ = 112500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112500}=\sqrt{22500*5}=\sqrt{22500}*\sqrt{5}=150\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-150\sqrt{5}}{2*1}=\frac{-250-150\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+150\sqrt{5}}{2*1}=\frac{-250+150\sqrt{5}}{2} $
| 19z+-4z=-15 | | -8c-4c-5c=-17 | | 5g+2g+4g-10g=10 | | -20d+15d-2d-10d=17 | | 15k+2k-11k=12 | | 13s+3s-14s-2s+s=17 | | 2p+2p=16 | | 15m-7m=16 | | 30=-5(6n)+6 | | 8-12x=-3(2+4x)+14 | | F(x)=-x(x-3)(x+2) | | 9=17-4z | | -13=9r+8 | | -2+-2j=2 | | 1+4y=15 | | 1+3s=14 | | 9=n/3+10 | | 2n—1=11 | | 2-3k=20 | | √3x^2+12x+13=2x+5 | | 4=2+2b | | 2w=-19 | | D=8/7(m-2) | | 17-3p/2=4/5 | | 9000=(n-2)180 | | 100*y=9.8843 | | 3x-1/5=2.8 | | 16u-9u=56 | | x+(x+2)+(x+3)=50 | | 5w-14=-14 | | 18+6x-28=4 | | -7n+2=-3n-8-2n |